

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
 An International Dpen Access, Peer-reviewed, Refereed Journal

Harmonic Mean Labeling Of H-Super Subdivision of YTree

A graph G with p vertices and q edges is called a harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels $\mathrm{f}(\mathrm{x})$ from $\{1,2, \ldots . . \mathrm{q}+1\}$ in such a way that each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{uv})=\left\lceil\left.\frac{2 f(u) f(v)}{f(u)+f(v)} \right\rvert\,\right.$ (or) $\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ then the edge labels are distinct. In this case f is called Harmonic mean labeling of G. In this paper we prove that some families of graphs such as H - super subdivision of Y-Tree $\operatorname{HSS}\left(Y_{n+1}\right), \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}, \operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}, \mathrm{HSS}\left(Y_{n+1}\right) \odot K_{2}$ are harmonic mean graphs.

Keywords:

Harmonic mean graph, $\mathrm{H}-$ super subdivision of $\operatorname{HSS}\left(Y_{n+1}\right), \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}$,
$\operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}, \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2}$
AMS subject classification :- 05078

Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a (p, q) graph with $\mathrm{p}=|\mathrm{V}(\mathrm{G})|$ vertices and $\mathrm{q}=|\mathrm{E}(\mathrm{G})|$ edges, where $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ respectively denote the vertex set and edge set of the graph G. In this paper, we consider the graphs which are simple, finite and undirected. For graph theoretic terminology and notations we refer to Harary [4]

The concept of graph labeling was introduced by Rosa in 1967. A detailed survey of graph labeling is available in Gallian[3].The concept of Harmonic mean labeling of graph was introduced by S.Somasundaram, R.Ponraj and S.S.Sandhya and they investigated the existence of harmonic mean labeling of several family of graphs .The concept
was further studied by several authors. We have proved Harmonic mean labeling of subdivision graphs such as $P_{n} \odot K_{1}, P_{n} \odot \overline{K_{2}}$, H-graph, crown, $C_{n} \odot K_{1}, C_{n} \odot \overline{K_{2}}$, quadrilateral snake, Triangular snake and also proved Harmonic mean labeling of some graphs such as Triple triangular snake $\mathrm{T}\left(T_{n}\right)$, Alternate Triple triangular snake $\mathrm{A}\left[\mathrm{T}\left(T_{n}\right)\right]$, Triple quadrilateral snake $\mathrm{T}\left(Q_{n}\right)$, Alternate Triple quadrilateral snake $\mathrm{A}\left[\mathrm{T}\left(Q_{n}\right)\right]$, Twig graph $\mathrm{T}(\mathrm{n})$, balloon triangular snake $T_{n}\left(C_{m}\right)$, key graph $\mathrm{Ky}(\mathrm{m}, \mathrm{n})$,zig-zag triangle $\mathrm{Z}\left(T_{n}\right), \mathrm{Z}\left(T_{n}\right) \odot K_{1}, \mathrm{Z}\left(T_{n}\right) \odot \overline{K_{2}}, \mathrm{Z}\left(T_{n}\right) \odot K_{2}$, alternate zig-zag triangle $\mathrm{A} \mathrm{Z}\left(T_{n}\right)$, spiked snake graph $\operatorname{SS}(4, \mathrm{n})$ and harmonic mean labeling of h -super subdivision of path, cycle graphs. The following definitions are useful for the present investigation.

Definition: 1.1 [8]

A Graph $G=(V, E)$ with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $v \in \mathrm{~V}$ with distinct labels $\mathrm{f}(\mathrm{v})$ from $\{1,2, \ldots, \mathrm{q}+1\}$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{uv})$ $=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil$ (or) $\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called Harmonic mean labeling of G.

Definition: 1.2 [2]

Let G be a (p, q) graph. A graph obtained from G by replacing each edge e_{i} by a H -graph in such a way that the ends e_{i} are merged with a pendent vertex in P_{2} and a pendent vertex P_{2}^{\prime} is called H -Super Subdivision of G and it is denoted by $\operatorname{HSS}(\mathrm{G})$ where the H -graph is a tree on 6 vertices in which exactly two vertices of degree 3 .

Definition: 1.2[2]

A Y-tree $Y_{n+1}(\mathrm{n} \geq 2)$ is a graph obtained from the path P_{n} by appending an edge to a vertex of a path P_{n} adjacent to an end vertex.

Definition: 1.2 [2]

Let Y_{n+1} be a Y-tree ($\mathrm{n} \geq 2$) with $\mathrm{n}+2$ vertices and $\mathrm{n}+1$ edges. Let the vertices of Y_{n+1} be $v_{1}, v_{2}, v_{3}, \ldots . v_{n+1}$, u. The $\operatorname{HSS}\left(Y_{n+1}\right)$ is constructed from Y_{n+1} by replacing each edge by the H-graph. The vertex and edge sets of $\operatorname{HSS}\left(Y_{n+1}\right)$ are as follows

$$
\begin{aligned}
\mathrm{V}(& \left.\operatorname{HSS}\left(Y_{n+1}\right)\right)=\left\{\left\{\mathrm{u}, v_{n} u^{(1)}, v_{n} u^{(2)}, \mathrm{u} v_{n}^{(1)}, \mathrm{u} v_{n}^{(2)}, v_{n+1}\right\}\right. \\
& \left.\cup\left\{v_{i} \cup v_{i(i+1)}{ }^{(1)} \cup v_{i(i+1)}{ }^{(2)} \cup v_{(i+1) i}{ }^{(1)} \cup v_{(i+1) i}^{(2)} / 1 \leq i \leq n\right\}\right\} \text { and }
\end{aligned}
$$

$\mathrm{E}\left(\operatorname{HSS}\left(Y_{n+1}\right)\right)=E_{1} \cup E_{2}$ where

$$
\begin{aligned}
& E_{1}=\left\{v_{n} v_{n} u^{(1)}, v_{n} u^{(1)} v_{n} u^{(2)}, v_{n} u^{(1)} \mathrm{u} v_{n}^{(1)}, \mathrm{u} v_{n}^{(1)} \mathrm{u} v_{n}^{(2)}, \mathrm{u} v_{n}^{(1)} \mathrm{u}\right\}, \\
& E_{2}=\left\{v_{i} v_{i(i+1)}^{(1)}, v_{i(i+1)}^{(1)} v_{i(i+1)}{ }^{(2)}, v_{i(i+1)}^{(1)} v_{(i+1) i}^{(1)}, v_{(i+1) i}^{(1)} v_{(i+1) i}^{(2)},\right. \\
&\left.v_{(i+1) i}{ }^{(1)} v_{i+1} / 1 \leq i \leq n\right\} .
\end{aligned}
$$

Then $\operatorname{HSS}\left(Y_{n+1}\right)$ has $5 n+6$ vertices and $5 n+5$ edges.

In this paper we prove that H - super subdivision of $\operatorname{HSS}\left(Y_{n+1}\right), \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}$, $\operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}, \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2}$ are harmonic mean graph

II. Harmonic mean labeling of graphs

Theorem:2.1

The structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{n+1}\right)$ is a harmonic mean graphs

Proof:

Let $\operatorname{HSS}\left(Y_{n+1}\right)$ be the H - super subdivision of a Y-tree Y_{n+1} which has $5 \mathrm{n}+6$ vertices and
$5 n+5$ edges. The vertex set
$\left.\mathrm{V}(\mathrm{G})=\left\{\left\{\mathrm{u}, \mathrm{u} v_{n}{ }^{(1)}, \mathrm{u} v_{n}{ }^{(2)}, v_{n} u^{(1)}, v_{n} u^{(2)}, v_{n+1}\right\} \cup\left\{v_{i} \cup x_{i} \cup r_{i} \cup s_{i} \cup y_{i}\right\} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right\}$ and the edge set.
$\mathrm{E}(\mathrm{G})=\left\{\left\{v_{n} v_{n} u^{(2)}, v_{n} u^{(2)} v_{n} u^{(1)}, v_{n} u^{(2)} \mathrm{u} v_{n}^{(1)}, \mathrm{u} \mathrm{u} v_{n}^{(1)}, \mathrm{u} v_{n}{ }^{(1)} \mathrm{u} v_{n}{ }^{(2)}\right\} \cup\left\{v_{i} x_{i}, x_{i} r_{i}, x_{i} y_{i}, s_{i} y_{i}\right.\right.$, $\left.\left.y_{i} v_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right\}$.

Then the resultant graph is harmonic mean labeling of structure of H -super subdivision of
Y-tree graph.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, q+1\}$ by

$f\left(v_{i}\right)$	$=5 \mathrm{i}-4$	for $1 \leq i \leq n$	
$f\left(x_{i}\right)$	$=5 \mathrm{i}-3$		for $1 \leq i \leq n$
$f\left(y_{i}\right)$	$=5 \mathrm{i}$	for $1 \leq i \leq n$	
$f\left(r_{i}\right)$	$=5 \mathrm{i}-2$	for $1 \leq i \leq n$	
$f\left(s_{i}\right)$	$=5 \mathrm{i}-1$	for $1 \leq i \leq n$	
$f(u)$	$=5 \mathrm{n}+2$		
$f\left(u v_{n}{ }^{(1)}\right)$	$=5 \mathrm{n}+3$		
$f\left(u v_{n}{ }^{(2)}\right)$	$=5 \mathrm{n}+4$		

$$
\begin{aligned}
& f\left(v_{n} u^{(1)}\right)=5 \mathrm{n}+5 \\
& f\left(v_{n} u^{(2)}\right)=5 \mathrm{n}+6
\end{aligned}
$$

Then the resulting edge labels are distinct.

$$
\begin{array}{llr}
f\left(v_{i} x_{i}\right) & \text { for } 1 \leq i \leq n \\
f\left(x_{i} r_{i}\right) & \text { for } 1 \leq i \leq n \\
f\left(x_{i} y_{i}\right) & \text { for } 1 \leq 2 & \text { for } 1 \leq i \leq n \\
f\left(s_{i} y_{i}\right) & \text { for } 1 \leq i \leq n \\
f\left(y_{i} v_{i+1}\right) & =5 \mathrm{i}-1 & \\
f\left(v_{n} v_{n} u^{(2)}\right) & =5 \mathrm{n} & \\
f\left(u \mathrm{u}_{n}{ }^{(1)}\right) & =5 \mathrm{n}+2 & \\
f\left(\mathrm{u} v_{n}{ }^{(1)} \mathrm{u} v_{n}{ }^{(2)}\right) & =5 \mathrm{n}+3 & \\
f\left(\mathrm{u} v_{n}{ }^{(1)} v_{n} u^{(2)}\right) & =5 \mathrm{n}+4 & \\
f\left(v_{n} u^{(1)} v_{n} u^{(2)}\right) & =5 \mathrm{n}+5 &
\end{array}
$$

Thus f provides a harmonic mean labeling of graph G.
Hence G is a harmonic mean graph.

Example:2.1.1

A harmonic mean labeling of graph G obtained by structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{4+1}\right)$ are shown in fig 2.1.1

fig 2.1.1

Theorem:2.2

The structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}$ is a harmonic mean graph.

Proof:

Let $\operatorname{HSS}\left(Y_{n+1}\right)$ be the H - super subdivision of a Y-tree Y_{n+1} which has $5 \mathrm{n}+6$ vertices and $5 n+5$ edges and every vertex attached by K_{1} graph. Then the resultant graph is $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}$ graph whose vertex set

$$
\begin{aligned}
\mathrm{V}(\mathrm{G})= & \left\{\left\{\quad \mathrm{z}, \quad \mathrm{z} w_{n}^{(1)}, \quad \mathrm{z} w_{n}^{(2)}, \quad w_{n} z^{(1)}, w_{n} z^{(2)}, \quad k_{n}^{(1)}, k_{n}^{(2)}, \quad k_{n}^{(3)}, l_{n}^{(1)}, \quad l_{n}^{(2)}, \quad u_{n+1},\right.\right. \\
& \left.v_{n+1}, w_{n+1}, s_{n+1}\right\} \cup\left\{u_{i}, v_{i}, w_{i}, s_{i}, r_{i}, t_{i}, x_{i}, y_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \\
& \left.\cup\left\{p_{i}, q_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}\right\} .
\end{aligned}
$$

And the edge set

$$
\begin{aligned}
\mathrm{E}(\mathrm{G})= & \left\{\left\{\mathrm{z} \quad \mathrm{Z} w_{n}{ }^{(1)}, \quad \mathrm{z} \quad k_{n}{ }^{(1)}, \quad \mathrm{Z} w_{n}{ }^{(1)} k_{n}{ }^{(2)}, \quad \mathrm{Z} w_{n}{ }^{(1)} \mathrm{Z} w_{n}{ }^{(2)}, \quad \mathrm{z} w_{n}{ }^{(2)} k_{n}{ }^{(3)}, \quad \mathrm{z} w_{n}{ }^{(1)} w_{n} Z^{(2)},\right.\right. & w_{n} Z^{(1)} \\
& \left.l_{n}{ }^{(1)}, w_{n} Z^{(1)} w_{n} Z^{(2)}, w_{n} Z^{(2)} l_{n}{ }^{(2)}, w_{n} Z^{(2)} w_{n}\right\} \cup\left\{v_{i} u_{i+1}, v_{i} w_{i}, u_{i+1} w_{i+1}, w_{i} s_{i},\right. & v_{i} r_{i},
\end{aligned}
$$

$\left.t_{i} u_{i+1}, r_{i} x_{i}, t_{i} y_{i}, / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{p_{i} u_{i+1}, q_{i} v_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{u_{1} v_{1}, \quad u_{n+1} v_{n+1}, u_{n+1} w_{n+1}\right.$, $\left.\left.w_{n+1} s_{n+1}\right\}\right\}$.
Then the resultant graph is harmonic mean labeling of structure of H - super subdivision of $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}$ Y-tree graph.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, q+1\}$ by

$f\left(u_{1}\right)$	$=1$	
$f\left(u_{i}\right)$	$=10 \mathrm{i}-11$	
$f\left(v_{i}\right)$	$=10 \mathrm{i}-6$	
$f\left(v_{n+1}\right)$	$=10 \mathrm{n}+12$	
$f\left(w_{1}\right)$	$=3$	for $2 \leq i \leq n+1$
$f\left(w_{i}\right)$	for $1 \leq i \leq n$	
$f\left(w_{n+1}\right)$	$=10 \mathrm{i}-8$	
$f\left(p_{i}\right)$		
$f\left(q_{i}\right)$	$=10 \mathrm{i}$	for $2 \leq i \leq n$
$f\left(s_{1}\right)$	for $1 \leq i \leq n-1$	
$f\left(s_{i}\right)$	$=10 \mathrm{i}-9$	for $1 \leq i \leq n-1$
$f\left(r_{i}\right)$	$=10 \mathrm{i}-5$	for $2 \leq i \leq n+1$
$f\left(t_{i}\right)$	$=10 \mathrm{i}-2$	for $1 \leq i \leq n$
$f\left(x_{i}\right)$	$=10 \mathrm{i}-4$	for $1 \leq i \leq n$
$f\left(y_{i}\right)$	$=10 \mathrm{i}-3$	for $1 \leq i \leq n$
$f(z)$	$=10 \mathrm{n}+3$	

$$
\begin{array}{ll}
f\left(z w_{n}{ }^{(2)}\right) & =10 \mathrm{n}+7 \\
f\left(k_{n}{ }^{(1)}\right) & =10 \mathrm{n}+2 \\
f\left(k_{n}{ }^{(2)}\right) & =10 \mathrm{n}+4 \\
f\left(k_{n}{ }^{(3)}\right) & =10 \mathrm{n}+6 \\
f\left(w_{n} z^{(1)}\right) & =10 \mathrm{n}+9 \\
f\left(w_{n} z^{(2)}\right) & =10 \mathrm{n}+11 \\
f\left(l_{n}{ }^{(1)}\right) & =10 \mathrm{n}+8 \\
f\left(l_{n}{ }^{(2)}\right) & =10 \mathrm{n}+10
\end{array}
$$

Then the resulting edge labels are distinct.

$$
\begin{aligned}
& f\left(w_{n} Z^{(1)} w_{n} Z^{(2)}\right)=10 \mathrm{n}+10 \\
& f\left(w_{n} Z^{(2)} l_{n}{ }^{(2)}\right)=10 \mathrm{n}+11
\end{aligned}
$$

Thus f provides a harmonic mean labeling of graph G.
Hence G is a harmonic mean graph.

Example:2.2.1

A harmonic mean labeling of graph G obtained by structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{5+1}\right) \odot K_{1}$ are shown in fig 2.2.1

fig 2.2.1

Theorem:2.3

The structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}$ is a harmonic mean graph.

Proof:

Let $\operatorname{HSS}\left(Y_{n+1}\right)$ be the H - super subdivision of a Y-tree Y_{n+1} which has $5 \mathrm{n}+6$ vertices and $5 n+5$ edges and every vertex attached by $\overline{K_{2}}$ graph. Then the resultant graph is $\operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}$ graph whose vertex set

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G})=\left\{\left\{u_{i}, v_{i}, x_{i}, y_{i}, z_{i}, p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, e_{i}, d_{i}, f_{i}, k_{i}, l_{i}, / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right\} \cup \\
& \left\{\begin{array}{l}
z_{n+1}, s_{n+1}, r_{n+1}, w, w z_{n}{ }^{(1)}, w z_{n}^{(2)}, z_{n} w^{(1)}, z_{n} w^{(2)}, \\
\left.\quad g_{n}^{(1)}, g_{n}^{(2)}, g_{n}^{(3)}, g_{n}^{(4)}, g_{n}^{(5)}, g_{n}^{(6)}, h_{n}^{(1)}, h_{n}^{(2)}, h_{n}^{(3)}, h_{n}^{(4)}\right\} .
\end{array}\right.
\end{aligned}
$$

And the edge set
$\left.z_{n} w^{(2)} h_{n}{ }^{(4)}, z_{n} w^{(1)} z_{n} w^{(2)}, z_{n} w^{(2)} z_{n}\right\} \cup\left\{u_{i} x_{i}, v_{i} x_{i}, x_{i} y_{i}, z_{i} x_{i}\right.$,

$$
\left.y_{i} z_{i+1}, z_{i} r_{i}, z_{i} s_{i}, x_{i} t_{i}, y_{i} e_{i}, t_{i} d_{i}, t_{i} f_{i}, e_{i} k_{i}, e_{i} l_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{y_{n} z_{n+1}\right.
$$

$$
\left.z_{n+1} s_{n+1}, z_{n+1} r_{n+1}\right\} .
$$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{G})=\left\{\left\{\mathrm{w} g_{n}{ }^{(1)}, \mathrm{w} g_{n}{ }^{(2)}, \mathrm{w} z_{n}{ }^{(1)} g_{n}{ }^{(3)} \mathrm{f}, \mathrm{w} z_{n}{ }^{(1)} g_{n}{ }^{(4)} \text {, } \mathrm{w} z_{n}{ }^{(2)} g_{n}{ }^{(5)} \text {, } \mathrm{w} z_{n}{ }^{(2)} g_{n}{ }^{(6)}\right.\right. \text {, } \\
& \mathrm{w} \mathrm{w} z_{n}{ }^{(1)} \mathrm{f} z_{n}{ }^{(1)} \mathrm{w} z_{n}{ }^{(2)}, \mathrm{w} z_{n}{ }^{(1)} z_{n} w^{2}, z_{n} w^{(1)} h_{n}{ }^{(1)}, z_{n} w^{(1)} h_{n}{ }^{(2)} \text {, } \\
& z_{n} w^{(2)} h_{n}{ }^{(3)},
\end{aligned}
$$

Then the resultant graph is harmonic mean labeling of structure of H - super subdivision of $\operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}$ Y-tree graph.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, q+1\}$ by

$f\left(x_{i}\right)$	$=15 i-9$	for $1 \leq i \leq n$
$f\left(y_{i}\right)$	$=15 \mathrm{i}-1$	for $1 \leq i \leq n$
$f\left(u_{1}\right)$	$=1$	
$f\left(u_{i}\right)$	$=15 \mathrm{i}-11$	for $2 \leq i \leq n$
$f\left(v_{i}\right)$	$=15 \mathrm{i}-10$	for $1 \leq i \leq n$
$f\left(p_{i}\right)$	$=15 \mathrm{i}-2$	for $1 \leq i \leq n$
$f\left(q_{i}\right)$	$=15 \mathrm{i}$	for $1 \leq i \leq n$
$f\left(z_{1}\right)$		
$f\left(z_{i}\right)$		
$f\left(z_{n+1}\right)$	$=15 n+3$	
$f\left(r_{i}\right)$	$=15 \mathrm{i}-13$	for $1 \leq i \leq n+1$
$f\left(s_{i}\right)$	$=15 \mathrm{i}-12$	for $1 \leq i \leq n-1$
$f\left(s_{n+1}\right)$	$=15 n+1$	
$f\left(t_{i}\right)$	$=15 i-8$	for $1 \leq i \leq n$
$f\left(e_{i}\right)$	$=15 i-4$	for $1 \leq i \leq n$
$f\left(d_{i}\right)$	$=15 \mathrm{i}-7$	for $1 \leq i \leq$
$f\left(f_{i}\right)$	$=15 \mathrm{i}-6$	for $1 \leq i \leq$
$f\left(k_{i}\right)$	$=15 \mathrm{i}-5$	for $1 \leq i$
$f\left(l_{i}\right)$	$=15 \mathrm{i}-3$	for $1 \leq i \leq n$

$$
f(w) \quad=15 \mathrm{n}+5
$$

$$
f\left(g_{n}^{(1)}\right)=15 \mathrm{n}+6
$$

$$
f\left(g_{n}^{(2)}\right)=15 n+4
$$

$$
f\left(g_{n}^{(3)}\right)=15 \mathrm{n}+9
$$

$$
f\left(g_{n}{ }^{(4)}\right)=15 \mathrm{n}+7
$$

$$
f\left(g_{n}^{(5)}\right)=15 n+12
$$

$$
f\left(g_{n}{ }^{(6)}\right)=15 n+10
$$

$$
f\left(w z_{n}^{(1)}\right)=15 \mathrm{n}+8
$$

$$
f\left(w z_{n}{ }^{(2)}\right)=15 \mathrm{n}+11
$$

$$
f\left(z_{n} w^{(1)}\right)=15 \mathrm{n}+14
$$

$$
\begin{aligned}
& f\left(z_{n} w^{(2)}\right)=15 \mathrm{n}+17 \\
& f\left({h_{n}}^{(1)}\right)=15 \mathrm{n}+13 \\
& f\left({h_{n}}^{(2)}\right)=15 \mathrm{n}+15 \\
& f\left({h_{n}}^{(3)}\right)=15 \mathrm{n}+16 \\
& f\left(h_{n}{ }^{(4)}\right)=15 \mathrm{n}+18
\end{aligned}
$$

Then the resulting edge labels are distinct.

$f\left(x_{i} y_{i}\right)$	$=15 \mathrm{i}-6$	for $1 \leq i \leq n$
$f\left(x_{1} z_{1}\right)$	$=4$	
$f\left(x_{i} z_{i}\right)$	$=15 \mathrm{i}-12$	for $2 \leq i \leq n$
$f\left(y_{i} z_{i+1}\right)$	$=15 \mathrm{i}$	for $1 \leq i \leq n$
$f\left(y_{n} z_{n+1}\right)$		
$f\left(x_{1} u_{1}\right)$		
$f\left(x_{i} u_{i}\right)$	$=15 i-11$	for $2 \leq i \leq n$
$f\left(x_{i} v_{i}\right)$	$=15 \mathrm{i}-10$	for $1 \leq i \leq n$
$f\left(y_{i} p_{i}\right)$	$=15 \mathrm{i}-2$	for $1 \leq i \leq n-1$
$f\left(y_{n} p_{n}\right)=15 n-1$		
$f\left(y_{i} q_{i}\right)$	$=15 \mathrm{i}-1$	for $1 \leq i \leq n-1$
$f\left(y_{n} p_{n}\right)$	$=15 \mathrm{n}$	
$f\left(z_{1} r_{1}\right)$	$=2$	
$f\left(z_{i} r_{i}\right)$	$=15 \mathrm{i}-14$	
$f\left(z_{n+1} r_{n+1}\right)$		
$f\left(z_{1} s_{1}\right)$	$=3$	
$f\left(z_{i} s_{i}\right)$	$=15 \mathrm{i}-13$	for $2 \leq i \leq n$
$f\left(x_{i} t_{i}\right)$	$=15 \mathrm{i}-9$	for $1 \leq i \leq n$
$f\left(y_{i} e_{i}\right)$	$=15 \mathrm{i}-3$	for $1 \leq i \leq n$
$f\left(t_{i} d_{i}\right)$	$=15 \mathrm{i}-8$	for $1 \leq i \leq n$
$f\left(t_{i} f_{i}\right)$	$=15 \mathrm{i}-7$	for $1 \leq i \leq n$
$f\left(e_{i} k_{i}\right)$	$=15 \mathrm{i}-5$	for $1 \leq i \leq n$
$f\left(e_{i} l_{i}\right)$	$=15 i-4$	for $1 \leq i \leq n$
$f\left(z_{n} z_{n} w^{(2)}\right)$	$=15 \mathrm{n}-2$	
$f\left(w g_{n}{ }^{(1)}\right)$	$=15 \mathrm{n}+5$	

$$
\begin{aligned}
& f\left(w g_{n}{ }^{(2)}\right)=15 \mathrm{n}+4 \\
& f\left(w w z_{n}{ }^{(1)}\right)=15 \mathrm{n}+6 \\
& f\left(\mathrm{w} z_{n}{ }^{(1)} g_{n}{ }^{(3)}\right)=15 \mathrm{n}+8 \\
& f\left(\mathrm{w} z_{n}{ }^{(1)} g_{n}{ }^{(4)}\right)=15 \mathrm{n}+7 \\
& f\left(\mathrm{w} z_{n}{ }^{(1)} \mathrm{W} z_{n}{ }^{(2)}\right)=15 \mathrm{n}+9 \\
& f\left(\mathrm{w} z_{n}{ }^{(2)} g_{n}{ }^{(5)}\right)=15 \mathrm{n}+11 \\
& f\left(\mathrm{w} z_{n}{ }^{(2)} g_{n}{ }^{(6)}\right)=15 \mathrm{n}+10 \\
& f\left(\mathrm{w} z_{n}{ }^{(1)} z_{n} w^{(2)}\right)=15 \mathrm{n}+12 \\
& f\left(z_{n} w^{(1)} h_{n}{ }^{(1)}\right)=15 \mathrm{n}+13 \\
& f\left(z_{n} w^{(1)} h_{n}{ }^{(2)}\right)=15 \mathrm{n}+14 \\
& f\left(z_{n} w^{(2)} h_{n}{ }^{(3)}\right)=15 \mathrm{n}+16 \\
& f\left(z_{n} w^{(2)} h_{n}{ }^{(4)}\right)=15 \mathrm{n}+17 \\
& f\left(z_{n} w^{(1)} z_{n} w^{(2)}\right)=15 \mathrm{n}+15
\end{aligned}
$$

Thus f provides a harmonic mean labeling of graph G .
Hence G is a harmonic mean graph

Example:2.3.1

A harmonic mean labeling of graph G obtained by structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}$ are shown in fig 2.3.1

fig 2.3.1

Theorem:2.4

The structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2}$ is a harmonic mean graph.

Proof:

Let $\operatorname{HSS}\left(Y_{n+1}\right)$ be the H - super subdivision of a Y-tree Y_{n+1} which has $5 \mathrm{n}+6$ vertices and $5 \mathrm{n}+5$ edges and every vertex attached by K_{2} graph. Then the resultant graph is $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2}$ graph whose vertex set

$$
\mathrm{V}(\mathrm{G})=\left\{\left\{u_{i}, v_{i}, x_{i}, y_{i}, z_{i}, p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, e_{i}, d_{i}, f_{i}, k_{i}, l_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right\} \cup\left\{p_{i}, q_{i} / 1 \leq i \leq n-1\right\}
$$

U

$$
\left\{z_{n+1}, s_{n+1}, r_{n+1}, w, w z_{n}{ }^{(1)}, w z_{n}{ }^{(2)}, z_{n} w^{(1)}, z_{n} w^{(2)}\right.
$$

$$
\left.g_{n}{ }^{(1)}, g_{n}{ }^{(2)}, g_{n}{ }^{(3)}, g_{n}{ }^{(4)}, g_{n}{ }^{(5)}, g_{n}{ }^{(6)},{h_{n}}^{(1)},{h_{n}}^{(2)}, h_{n}^{(3)},{h_{n}}^{(4)}\right\} .
$$

And the edge set

$$
\begin{aligned}
\mathrm{E}(\mathrm{G})=\{\{ & \mathrm{w} g_{n}{ }^{(1)}, \mathrm{w} g_{n}{ }^{(2)}, g_{n}{ }^{(1)} g_{n}{ }^{(2)}, \mathrm{w} w z_{n}{ }^{(1)}, w z_{n}{ }^{(1)} g_{n}{ }^{(3)}, w z_{n}{ }^{(2)} g_{n}{ }^{(4)}, g_{n}{ }^{(3)} g_{n}{ }^{(4)}, \\
& w z_{n}{ }^{(2)} w z_{n}{ }^{(1)}, w z_{n}{ }^{(2)} g_{n}{ }^{(5)}, w z_{n}{ }^{(2)} g_{n}{ }^{(6)}, g_{n}{ }^{(5)} g_{n}{ }^{(6)}, w z_{n}^{(1)} z_{n} w^{(2)}, \\
& z_{n} w^{(1)} h_{n}{ }^{(1)}, z_{n} w^{(1)} h_{n}{ }^{(2)},, h_{n}{ }^{(1)} h_{n}{ }^{(2)}, z_{n} w^{(1)} z_{n} w^{(2)}, z_{n} z_{n} w^{(2)}, \\
& \left.z_{n} w^{(2)} \quad h_{n}{ }^{(3)}, \quad z_{n} w^{(2)} h_{n}^{(4)}, h_{n}{ }^{(3)}, h_{n}^{(4)}\right\} \quad \cup \quad\left\{\quad u_{i} x_{i}, \quad u_{i} v_{i}, \quad v_{i} x_{i}, x_{i} y_{i}, z_{i} x_{i},\right. \\
& \left.y_{i} z_{i+1}, z_{i} r_{i}, z_{i} s_{i}, r_{i} s_{i}, x_{i} t_{i}, y_{i} e_{i}, t_{i} d_{i}, d_{i}, f_{i}, e_{i} k_{i}, e_{i} l_{i}, k_{i} l_{i} \neq \mathrm{i} \leq \mathrm{n}\right\} \cup \\
& \left\{y_{n} z_{n+1}, z_{n+1} s_{n+1}, z_{n+1} r_{n+1}\right\} .
\end{aligned}
$$

Then the resultant graph is harmonic mean labeling of structure of H - super subdivision of $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2}$ Y-tree graph.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, q+1\}$ by

$f\left(s_{1}\right)$	$=2$		
$f\left(s_{i}\right)$	$=20 \mathrm{i}-17$	for	$2 \leq i \leq n$
$f\left(s_{n+1}\right)$	$=20 n+4$		
$f\left(t_{i}\right)$	$=20 \mathrm{i}-11$	for	$1 \leq i \leq n$
$f\left(e_{i}\right)$	$=20 \mathrm{i}-5$	for	$1 \leq i \leq n$
$f\left(d_{i}\right)$	$=20 \mathrm{i}-10$	for	$1 \leq i \leq n$
$f\left(f_{i}\right)$	$=20 \mathrm{i}-9$	for	$1 \leq i \leq n$
$f\left(k_{i}\right)$	$=20 \mathrm{i}-8$	for	$1 \leq i \leq n$
$f\left(l_{i}\right)$	$=20 \mathrm{i}-6$	for	$1 \leq i \leq n$
$f(w)$	$=20 \mathrm{n}+6$		
$f\left(g_{n}{ }^{(1)}\right)$	$=20 \mathrm{n}+7$		
$\begin{aligned} & f\left(g_{n}{ }^{(2)}\right) \\ & f\left(g_{n}^{(3)}\right) \end{aligned}$	$\begin{aligned} & =20 n+5 \\ & =20 n+11 \end{aligned}$		
$\begin{aligned} & f\left(g_{n}^{(4)}\right) \\ & f\left(g_{n}{ }^{(5)}\right) \end{aligned}$	$\begin{aligned} & =20 n+9 \\ & =20 n+15 \end{aligned}$		
$f\left(g_{n}{ }^{(6)}\right)$	$=20 \mathrm{n}+13$		
$f\left(w z_{n}{ }^{(1)}\right)$	$=20 \mathrm{n}+10$		
$f\left(w z_{n}{ }^{(2)}\right)$	$=20 n+14$		
$f\left(z_{n} w^{(1)}\right)$	$=20 n+18$		
$f\left(z_{n} w^{(2)}\right)$	$=20 n+22$		
$f\left(h_{n}{ }^{(1)}\right)$	$=20 \mathrm{n}+17$		
$f\left(h_{n}{ }^{(2)}\right)$	$=20 \mathrm{n}+19$		
$f\left(h_{n}{ }^{(3)}\right)$	$=20 \mathrm{n}+21$		
$f\left(h_{n}{ }^{(4)}\right)$	$=20 n+23$		

Then the resulting edge labels are distinct.

$f\left(x_{i} y_{i}\right)$	$=20 \mathrm{i}-8$	for $1 \leq i \leq n$
$f\left(x_{i} z_{i}\right)$	$=20 \mathrm{i}-16$	for $1 \leq i \leq n$
$f\left(y_{i} z_{i+1}\right)$	$=20 \mathrm{i}$	for $1 \leq i \leq n$
$f\left(y_{n} z_{n+1}\right)$	$=20 \mathrm{n}+1$	
$f\left(x_{i} u_{i}\right)$	$=20 \mathrm{i}-14$	for $1 \leq i \leq n$
$f\left(x_{i} v_{i}\right)$	$=20 \mathrm{i}-13$	for $1 \leq i \leq n$

$f\left(u_{i} v_{i}\right)$	$=20 \mathrm{i}-15$	for $1 \leq i \leq n$
$f\left(y_{i} p_{i}\right)$	$=20 \mathrm{i}-2$	for $1 \leq i \leq n-1$
$f\left(y_{n} p_{n}\right)$	$=20 \mathrm{n}-3$	
$f\left(y_{i} q_{i}\right)$	$=20 \mathrm{i}-1$	for $1 \leq i \leq n-1$
$f\left(y_{n} q_{n}\right)$	$=20 \mathrm{n}$	
$f\left(p_{i} q_{i}\right)$	$=20 \mathrm{i}-3$	for $1 \leq i \leq n-1$
$f\left(p_{n} q_{n}\right)$	$=20 \mathrm{n}-1$	
$f\left(z_{i} r_{i}\right)$	$=20 \mathrm{i}-19$	for $1 \leq i \leq n$
$f\left(z_{n+1} r_{n+1}\right)$	$=20 \mathrm{n}+2$	
$f\left(z_{1} s_{1}\right)$	$=3$	
$f\left(z_{i} s_{i}\right)$	20 i	for $2 \leq i \leq n$
$f\left(z_{n+1} s_{n+1}\right)$	$=20 n+4$	
$f\left(r_{1} s_{1}\right)$	$=2$	
$f\left(r_{i} s_{i}\right)$	$=20 \mathrm{i}-17$	for $2 \leq i \leq n$
$f\left(x_{i} t_{i}\right)$	$=20 \mathrm{i}-12$	for $1 \leq i \leq n$
$f\left(y_{i} e_{i}\right)$	$=20 \mathrm{i}-4$	for $1 \leq i \leq n$
$f\left(t_{i} d_{i}\right)$	$=20 \mathrm{i}-11$	for $1 \leq i \leq n$
$f\left(t_{i} f_{i}\right)$	$=20 \mathrm{i}-10$	for $1 \leq i \leq n$
$f\left(d_{i} f_{i}\right)$	$=20 \mathrm{i}-9$	for $1 \leq i \leq n$
$f\left(e_{i} k_{i}\right)$	$=20 \mathrm{i}-6$	for
$f\left(e_{i} l_{i}\right)$	$=20 \mathrm{i}-5$	for $1 \leq i \leq n$
$f\left(k_{i} l_{i}\right)$	$=20 \mathrm{i}-7$	for $1 \leq i \leq n$
$f\left(w g_{n}{ }^{(1)}\right)$	$=20 \mathrm{n}+7$	
$f\left(w g_{n}{ }^{(2)}\right)$	$=20 \mathrm{n}+5$	
$f\left(g_{n}{ }^{(1)} g_{n}{ }^{(2)}\right)$	$=20 \mathrm{n}+6$	
$f\left(w w z_{n}{ }^{(1)}\right)$	$=20 \mathrm{n}+8$	
$f\left(\mathrm{w} z_{n}{ }^{(1)} g_{n}{ }^{(4)}\right)$	$=20 n+9$	
$f\left(g_{n}{ }^{(4)} g_{n}{ }^{(3)}\right)$	$=20 \mathrm{n}+10$	
$f\left(\mathrm{w} z_{n}{ }^{(2)} g_{n}{ }^{(6)}\right)$	$=20 n+13$	
$f\left(\mathrm{w} z_{n}{ }^{(1)} \mathrm{w} z_{n}{ }^{(2)}\right.$	$=20 \mathrm{n}+12$	
$f\left(g_{n}{ }^{(6)} g_{n}{ }^{(5)}\right)$	$=20 \mathrm{n}+14$	

$$
f\left(\mathrm{w} z_{n}{ }^{(2)} g_{n}{ }^{(5)}\right)=20 \mathrm{n}+15
$$

$$
f\left(z_{n} w^{(1)} h_{n}{ }^{(1)}\right)=
$$

$20 n+17$

$$
\begin{array}{ll}
f\left(h_{n}{ }^{(1)} h_{n}{ }^{(2)}\right) & =20 \mathrm{n}+18 \\
f\left(z_{n} w^{(2)} h_{n}{ }^{(3)}\right) & =20 \mathrm{n}+21 \\
f\left(h_{n}{ }^{(3)} h_{n}{ }^{(4)}\right) & =20 \mathrm{n}+22 \\
f\left(z_{n} w^{(2)} z_{n} w^{(1)}\right) & =20 \mathrm{n}+20 \\
f\left(z_{n} w^{(2)} h_{n}{ }^{(3)}\right) & =20 \mathrm{n}+21 \\
f\left(h_{n}{ }^{(4)} z_{n} w^{(2)}\right) & =20 \mathrm{n}+23 \\
f\left(z_{n} w^{(2)} z_{n}\right) & =20 \mathrm{n}
\end{array}
$$

Thus f provides a harmonic mean labeling of graph G .
Hence G is a harmonic mean graph

Example:2.4.1

A harmonic mean labeling of graph G obtained by structure of H - super subdivision of Y-tree $\operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2} \quad$ are shown in fig 2.4.1

fig 2.4.1

Conclusion:

We have presented a few new results on Harmonic mean labeling of certain classes of graphs like the that H super subdivision of $\operatorname{HSS}\left(Y_{n+1}\right), \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{1}, \operatorname{HSS}\left(Y_{n+1}\right) \odot \overline{K_{2}}, \operatorname{HSS}\left(Y_{n+1}\right) \odot K_{2}$. Analogous work can be carried out for other families and in the context of different types of graph labeling techniques.

References

1. E.Esakkiammal,K.Thirusangu, and S.Bala, " Gracefulness of H-super subdivision of Y-tree" British Journal Of Applied Science \& Technology 17(5) :1-10,2016,ISSN:2231-0843.
2. E.Esakkiammal,K.Thirusangu, and S.Seethalakshmi "Lucky Edge Labeling Of H-Super Subdivision Of Graphs"Annals Of Pure and Applied Mathematics,vol. 14 No.3,2017,601-610,ISSN:2279-087X(P),2279-0888 (online).
3. J.A. Gallian ," A Dynamic Survey Of Graph Labeling ", The Electronic Journal Of Combinatories ". (2012).
4. F. Harary ,"'Graph Theory", Narosa Pupulising House Reading, New Delhi. (1988).
5. S.Meena, M.Renugha, M.Sivasakthi, "Cardial Labeling For Different Type Of Shell Graphs" International Journal Of Scientific and Engineering Research, Vol.No.6,Issue 9,Sep 2015.
6. S.Meena, M.Sivasakthi, "Harmonic Mean Labeling Subdivision Graphs" International Journal Of Research And Analytical Reviews,Volume 6, Issue 1, Jan-March2019,E-ISSN 2348-1269, P-ISSN 2349-5138.
7. S.Meena, M.Sivasakthi, "Some Results On Harmonic Mean Graphs" International Journal Of Research And Analytical Reviews,Volume 6, Issue 2, June 2019,E-ISSN 2348-1269, P-ISSN 2349-5138.
8. S.Meena, M.Sivasakthi , "Harmonic Mean Labeling Of H-Super Subdivision Of Path Graphs" Advances In Mathematics: Scientific Journal 9, (2020), no.4, 2137-2145, Spec.Issue on NCFCTA - 2020, ISSN : 18578365, ESSN : 1857-8438.
9. S.Meena, M.Sivasakthi , "Harmonic Mean Labeling Of Zig-Zag Triangle Graphs" International Of Mathematics Trends And Technology, April 2020,Volume 66, Issue 4, Pg:17-24, ISSN: 2231-5357.
10. S.Meena, M.Sivasakthi , "New Results On Harmonic Mean Graphs" Malaya journal of mathematik, Vol . S, No.1, Pg : 482-486, Spec.Issue on NCFCTA - 2020, ISSN (P): 2319-3786. ISSN (O):2321-5666.
11. S.S. Sandhya, S.Somasundaram and R.Ponraj , "Some Results On Harmonic Mean graphs"Internation Journal Of Comtemporary Mathematical Sciences vol. 7 No.4, PP-197-208. (2012)
12. S.S. Sandhya, S.Somasundaram and R.Ponraj, " Harmonic Mean Labeling of Some Cycle Related Graphs"Internation Journal Of Math.Analysis, vol.6,2012, No.40, PP-1997-2005.
13. S.S. Sandhiya, S.Somasundaram and R.Ponraj, "Some More Result On Harmonic Mean Graphs", Journal Of Mathematics Research,vol.4,Feb(2012),No. 1 Pg: 21-29.
